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Abstract— We present TRUSS, or Tracking Risk with Ubiquitous
Smart Sensing, a novel system that infers and renders safety context
on construction sites by fusing data from wearable devices, distributed
sensing infrastructure, and video. Wearables stream real-time levels of
dangerous gases, dust, noise, light quality, altitude, and motion to base
stations that synchronize the mobile devices, monitor the environment,
and capture video. At the same time, low-power video collection and
processing nodes track the workers as they move through the view of
the cameras, identifying the tracks using information from the sensors.
These processes together connect the context-mining wearable sensors to
the video; information derived from the sensor data is used to highlight
salient elements in the video stream. The augmented stream in turn
provides users with better understanding of real-time risks, and supports
informed decision-making. We tested our system in an initial deployment
on an active construction site.

I. INTRODUCTION

Accidents on construction sites are extremely costly, result in lost
time, and are sometimes tragic. As such, construction companies are
interested in developing technologies that prevent accidents before
they happen. Construction workers engage in various activities that
may expose them to serious hazards, such as falling from rooftops and
scaffolding, unguarded machinery, being struck by heavy construction
equipment, electrocutions, and dangerous dust particles. The Occu-
pational Safety and Health Administration (OSHA) provides a guide
for the abatement of physical hazards in the construction industry
with suggestions for eliminating, controlling or mitigating them [1].
In reality, no foreseeable technology can completely replace expert
human supervision, and accidents happen despite strict adherence to
protocol. At the same time, even the best safety supervisors cannot
possibly observe an entire construction site at once; standard practice
prescribes intermittent inspection, typically conducted in scheduled
walk-throughs, and attention is spread across many activities. Sensor
networks can extend the sensory reach of the safety supervisor in
space and time, allowing continuous risk assessment both on- and
off-site, while directing the supervisor’s attention to those situations
that most demand it. In this paper, we present TRUSS, or Tracking
Risk with Ubiquitous Smart Sensing, a system that infers and renders
safety context on construction sites by fusing data from wearable
devices, a flexible distributed sensing infrastructure, and video. In
our system, expert, human-in-the-loop engagement is not replaced by
pure automation, but supported by smart sensing and visualization.

Our system fuses multimodal data streams from infrastructure and
wearable sensors to support a visual analytic [2] user interface that
provides safety supervisors with context they can use to evaluate
evolving risks. Wearable sensors stream real-time levels of danger-
ous gases, dust, noise, light quality, precise altitude, and motion
to base stations that synchronize the mobile devices, monitor the
environment, and capture video. At the same time, low-power video
nodes track the workers as they move in and out of the field of
view, attempting to re-identify the tracks using information from
the sensors. These processes together connect the context-mining
wearable sensors to the video; information derived from the sensor
data is used to highlight salient elements in the video stream, and the
augmented stream in turn provides users with better understanding
of real-time risks for decision support. For example, altitude signals

Fig. 1. Wearable sensor badge (left) and base station (right) containing
environmental, inertial, and altitude sensors, as well as an 802.15.4 radio for
real-time data streaming.

from the wearables are fused with track signals from the cameras to
infer consistent labels for workers as they move in and out of the
camera views, providing a means to visualize individual risks using
augmented video (e.g. exceeding an altitude threshold or working
below others). The sensor fusion also allows us to use relatively
simple vision trackers that can run on low-power devices onsite.

We tested TRUSS on an active construction site, instrumenting
3 steelworkers for a period of 2 weeks, during which they erected
several large steel structures in a new building. Accidents are fortu-
nately rare and we did not observe one during our study, but both the
steelworkers and the supervisors viewed TRUSS as a valuable tool
that would improve their safety if deployed as a real-time application.
The data collection was conducted to support a proof-of-concept, with
the goal of real-time operation in the future.

II. RELATED WORK

A number of researchers have applied wireless sensor networks
(WSNs) and wearable electronics to improving worker safety. Niu,
et al. develop a system for wirelessly monitoring methane concen-
trations in mines, focusing on intelligent sampling to reduce traffic
[3]. Angove and O’Flynn present their Bluetooth air-quality monitor
in [4]; our environmental monitoring hardware inherits from their
work. Fugini, et al. theorize wearables that would integrate seamlessly
with services to warn their wearers of risks, raise alarms for others,
or connect workers to emergency personnel when appropriate [5].
Other researchers have focused on algorithmic activity recognition
using wearables. Lukowicz, et al. recognize workshop tasks like
sawing, hammering, and turning a screw, using microphones and
accelerometers mounted on a user’s arm and training hidden Markov
models (HMM) for classification [6], [7].

Camera and wearable sensor fusion is motivated by the premise
that significant algorithmic challenges and computational costs of
parsing video can be mitigated by the labeling of tracked objects
through fusion of ID-linked sensor data with synchronized video.



Fig. 2. Volatile gas concentrations from wearable and infrastructure sensors
over a 3-hour period on the worksite. Painting begins halfway into the plot;
fumes are detected by both base stations (red and blue) and wearables (cyan
and magenta.) Worker 2’s (magenta) measured levels are fluctuating as he
moves between areas close to the painting and areas with better ventilation.

Candidates for this fusion include inertial sensors like accelerometers,
or other sensors that can capture some shared state also available
to a camera. Teixeira, et al. show in [8] that people wearing
accelerometers can, under certain conditions, be reliably linked to
their corresponding camera tracks by matching gait timing parameters
between the accelerometers and the camera. However, this strategy
fails when subjects are not walking, and when camera positions are
not ideal. In [9], the authors generalize this idea, forming an HMM for
each person consisting of a measurement from the inertial sensor and
a measurement from the camera and applying maximum a posteriori
estimation to generate the most likely matches.

A number of researchers encode information in images conveyed
to users through interactive interfaces. Teodosio and Bender define
a class of images called Salient Stills which capture and convey
information from across times in single, still images [10]. Our work
in TRUSS builds on this idea, using data from sensors in the scene
to select regions of video for extraction.

Finally, there have been a number of recent efforts to create
sensor network user interfaces that support open-ended exploration
of multimodal data. Several location- and orientation-aware handheld
devices allow their users to move through the network, and provide
interfaces for defining inference rules [11]. DoppelLab is a 3-d virtual
environment for exploring multimodal sensor data and its relationship
to architectural space [12].

III. THE TRUSS SYSTEM

The TRUSS system is composed of three main hardware compo-
nents: battery-powered wearable sensor devices, externally powered
base stations, and cameras attached to embedded Intel Atom comput-
ers. The components are time-synchronized using the ZigBee radios,
enabling applications that fuse data from the independent sources.

The embedded computer acts as a network bridge between the
low-power ZigBee network and a fixed-infrastructure WiFi or GSM
network, synchronizing the ZigBee network clocks and enabling
remote connections. The computer also runs a video subsystem
with cameras, a computer vision library, a video encoder, and a
streaming server. A more powerful remote server could perform
further operations on the video before it reaches users, though this
is not the case in the current system.

The fixed base stations host a set of sensors and connect to a daugh-
terboard designed for environmental monitoring. The onboard sensors
include a PIR motion sensor that can be used to trigger data collection
or processing when workers are detected. Microphones pick up loud
crashes, machine noise, and yelling. An infrared “sociometric” sensor
[13] on both the base stations and mobile nodes is used to detect
where workers are facing, and when and how they work together.
Light level and color sensors keep track of lighting conditions to
detect welding or anomalous flashes of light. Barometric pressure
sensors on the base stations, in tandem with pressure sensors on
each wearable, can provide relative altitude between the base stations
and wearables with sub-meter precision [14]. Both base stations and
wearables carry the environmental monitoring system, with sensors
that measure levels of particulates and uncalibrated levels of volatile
organic gases (VOC), hydrocarbons, and ozone. Magnetic strips allow
the base stations to be rapidly deployed and moved as necessary
by the workers on a construction site with many stationary ferrous
surfaces, such as scaffolding and machinery.

The wearable node includes a single microphone, light level and
color sensors, the IR sociometric sensor, and a temperature sensor.
It also carries a 3-axis accelerometer, 3-axis gyroscope, and 3-axis
magnetometer. ZigBee radios on both the mobile and infrastructure
nodes are used for synchronization and can be used for rough
localization of the mobile devices to within an area of 5-10 meters
radius using radio link quality (due to hardware issues, we were
unable to monitor the much more effective radio signal strength
indicator). In our first test, the radio-location accuracy suffered from a
very challenging environment, facing large metal obstructions and too
low a density of base stations to provide useful location information.

We explored several options for mounting the wearable sensor node
on the workers, ultimately offering them the options of belt-worn
and lanyard-worn nodes. Helmet mounting was also considered, but
our study subjects were to be frequently switching between welding
masks and standard construction hard hats.

The gas sensors we included were chosen for the specific con-
struction site targeted for our first deployment, which was to involve
steelworkers who would be working at height while cutting and
welding steel. These activities increase the risk of falling objects and
generate flammable or otherwise harmful gases. Elevated ozone levels
indicate arc welding activity, while VOCs and hydrocarbons indicate
flammable solvents. Spatiotemporally proximate elevated levels of
both would present a risk of ignition.

A. Tracking and Sensor Fusion

The cluttered and constantly changing environment of a construc-
tion site creates a particularly challenging tracking problem. Frequent
occlusions, reflections and flashes from welding, and a constantly
changing background rules out pure computer vision, especially as
workers move between discontinuous camera views. Radio-based
tracking alone is also not realistic, as base stations are moved
often and large metal objects are in constant motion. Inertial dead-
reckoning is prone to accumulating error. Cameras are quite effective
as long as the worker does not leave the field of view [15]; the camera
alone cannot recover a lost track.

We opted for a relatively simple vision pipeline: a mean-shift
blob tracker [16] operates on the image after a process of frame-
differencing, thresholding, morphological operations, and a weighted
moving average to smooth the motion. This approach works well to
find and track people who move with some frequency, but also finds
anything else (machinery, etc) that moves, though this problem can
be mitigated slightly by a well-chosen search radius and blob size



threshold. Still, the tracker can not segment multiple people when
they occlude each other, causing problems when they separate again
and the tracker cannot resolve the path ambiguity.

The cluttered environment of our target construction site was not
conducive to a gait-based camera-wearable fusion technique like [8],
as there was little space to walk freely, many occlusions, and long
periods of relatively stationary activities (e.g. welding in a cluttered
area). However, in the environment of our test and in many similar
scenarios, workers are often ascending and descending on lifts and
ladders in cramped spaces. A fusion between the pressure-based
altitude sensor and the camera tracker can recover worker ID after
track ambiguities. This approach fails if the workers are close to each
other at the same altitude (working on the same lift), but the system
can subsequently recover. In this scheme, the tracker fuses three
pieces of information: the number of workers in the field of view, the
altitudes of each worker provided by their wearable pressure sensors,
and the altitudes inferred from each tracked blob; a simple flowchart-
based algorithm performs logical and nearest-neighbor operations on
the track and altitude signals. This approach is intended as a test of the
data correspondence in the prototype system. Under the conditions
described above, the system can reject spurious tracks caused by
moving equipment and shadows, as well as identify multiple workers
in a scene after the tracker’s state has been cleared.

IV. SAFETY CONTROL PANEL

The TRUSS Control Panel is a software user interface for safety
managers that combines data streams from multiple sensors to better
communicate the changing context around each worker. The interface
augments video of workers on the construction site with information
from their wearable sensor nodes, and allows users to set thresholds
and priorities on single data streams or combinations of streams.
This person-centric information architecture imagines a worker safety
bubble metaphor, where a sphere of some variable radius encloses a
worker’s local context, and highlights the intersection of that context
with other bubbles centered on workers, machinery, or material.

This approach is intended to keep the user’s focus on the workers
while highlighting the causes of common accidents. In many cases,
coincident activities and circumstances that might individually be safe
can together be catastrophic, like a worker passing underneath another
carrying heavy objects at height, or flammable gases coming into
contact with sparks from a welder. By allowing interactive control
over the sensor thresholds, selection criteria, and critical ranges,
the information visualization can adapt to changing conditions as
the expert user sees fit. In this way, the interface plays a decision-
supporting or visual analytic role for an expert user.

Fig. 3 shows the TRUSS user interface to multimodal sensor data
and video. The interface is designed to prioritize and highlight what
its user deems to be the most relevant information, while at the same
time letting all the data through in the background to provide context.
On one side of the interface, a stitched-together view from multiple
cameras provides coverage of the scene; on the other, a spotlight view
highlights areas of interest. In both views, workers are augmented
with tinted circles reflecting both the levels (through intensity) and
types (through color) of dangerous gases around them. When the
spotlights intersect, colors mix, highlighting the extent as well as
the nature of the event. Building on the safety bubble metaphor,
the visualization treats areas of overlap as particularly worthy of
user attention; the radii of the bubbles can be set in the interface.
The outline of each circle reflects whether the enclosed worker has
exceeded an altitude threshold. The graphs show recent history, which
places the instantaneous video augmentation in a temporal context.

The TRUSS interface also offers a mode that composites video
from all the cameras into a single stream, weighting each input video
by the user’s choice of any sensed parameter (or group of parameters).
For example, the software might emphasize video of those individuals
exposed to the highest levels of ozone, or those most proximate to
others working at height. In our first deployment, this feature was not
particularly useful because of the relatively small number of workers
in the test; further development is planned for larger deployments.

V. USER STUDY

We tested TRUSS with 3 steelworkers over 2 weeks on an active
construction site. During this time, the workers erected several large
catwalk structures surrounding a set of 2-story air handlers on the
penthouse floor of a building under construction. The workers’
primary activities were arc welding, cutting steel, and carrying heavy
material, all while using ladders, lifts, and cranes for rigging large
steel frames and platforms. The study was designed to test our system
by collecting data to verify the sensors and hardware, and to support
the development of the safety control panel software using real data.
We also sought to gauge both the workers’ and supervisors’ attitudes
to safety monitoring, and to make sure the physical system could fit
into their existing workflow without causing problems. We distributed
the wearables and magnet-backed base stations to workers at the start
of each workday, and deployed the video PC and cameras ourselves.

We encountered several problems during the deployment, both
systemic and environmental. Embedded software instability caused
occasional system hang-ups. In addition, heat from the gas sensors
caused errors on the pressure sensor. The environmental challenges
included extreme, bit-scrambling electric fields caused by welding,
as well as metal filings falling into vents and causing shorts. In order
to allow air to flow freely into the gas sensors, the boards were left
mostly uncovered, resulting in at least one catastrophic short due
to worker sweat (that worker later received a better-sealed device).
Taken together, these problems resulted in partial data coverage.
Ultimately, we collected enough data to prove concepts and establish
correspondence between activities and measurements, but not enough
to build robust models. The next revision of the hardware addresses
many of these issues, and new deployments are planned.

There was some concern that workers would view the sensors and
cameras with suspicion, as tools of surveillance. We made it clear
that workers had absolutely no obligation to participate, and could
terminate the study at any time. We were surprised to find workers
not only agreeable, but extremely supportive of the research. The
workers reported concern for their own safety, and a hope that sensor
technologies could help them better understand and respond to risks.
A construction manager expressed the most concern for this issue, but
characterized it as a problem limited to the small number of workers
who would already be looking for ways to take unsafe shortcuts. We
did not encounter this attitude in the study.

After the deployment, we showed the safety control panel to a third
party construction industry expert. He expressed several important
concerns and recommendations, as well as interest in further study to
be conducted on new sites. He reported that worker behavior and state
of mind are major risk factors that we are not presently considering,
giving the example of a worker who may be frustrated by heavy traffic
on their morning commute, resulting in reckless behavior later in the
day. Still, he found our notion of a personal safety bubble compelling.
He noted that the interface makes some axes of otherwise invisible
context clear to users, and could be useful for training. He also noted
that 80% of safety management is prevention and 20% is field control,
and expressed that TRUSS could fit well in both. Finally, he asked



Fig. 3. Safety control panel interface. The elevated level of ozone surrounding the worker on the right indicates that he has been welding, while the elevated
level of volatile organic gases around the worker at left indicate an activity involving a paint or aerosol. Overlapping bubbles of these kinds would suggest
an increased risk of fire or explosion, and might be cause for alarm.

if there was some way he could see the whole site in a macroscopic
way that would expose faults and other points of interest for further
exploration through a more detailed interface like TRUSS. Shown
our prior work on macroscopic sensor network interfaces from [12],
he strongly suggested that the two interfaces be integrated.

VI. CONCLUSION

We presented a system for tracking risks to construction workers
using mobile and flexible infrastructure sensing together with cam-
eras. Using data collected from a test of the hardware system, we
developed a prototype UI for safety supervisors based on a sensor-
supported safety bubble metaphor. A simple but effective sensor
fusion algorithm was developed to identify tracked workers in video
using wearable barometric pressure sensors. There are clear avenues
for applying sensor fusion in future work, between microphones on
workers and in the infrastructure, or inertial sensors and cameras, for
example. New radio-location strategies could, together with a vision
tracker, effectively solve the video correspondence problem outright.
We believe that intuitive interfaces backed by intelligent algorithms
can better connect safety supervisors to the complex, evolving context
of a construction site.

A brief video is at http://youtu.be/O7Des085tTw.
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